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Abstract
The ability of a thermal anemometry system to accurately measure unsteady
fluid velocity depends on the electrical control system as well as the thermal
properties of the sensor. The present work is a numerical study of the
thermal transient response of a hot-wire. A conventional constant
temperature anemometer with an ideal feedback amplifier as well as a pulse
width modulated system were used to model the electrical current supplied
to the sensor to maintain a nominally constant sensor resistance. The
agreement between these two electrical models confirmed that the response
characteristics are only due to thermal effects. The thermal response was
tested by providing a known input function for the cooling velocity, and
comparing this with the output of the model. The first test used a step input
function. It was found that the thermal transient effects along the length of
the sensor caused the system to initially under predict the actual velocity
increase; this was followed by an exponential increase to the steady state
velocity. Secondly, the model was tested with sinusoidal inputs over a wide
frequency range. The ratio: indicated-velocity/input-velocity, as a function
of the input frequency was used to characterize the ‘thermal frequency
response’.

Keywords: hot-wire anemometry, computational heat transfer, thermal
frequency response

(Some figures in this article are in colour only in the electronic version)

Nomenclature

Ac cross sectional area of the sensor
A, B, n calibration coefficients
c specific heat
C-CTA conventional constant temperature

anemometer
DCo copper plating diameter
DTu tungsten sensor diameter
E voltage
f frequency of sine wave input to model
f ∗ dimensionless frequency of velocity

input function

1 Current address: Department of Aerospace and Mechanical Engineering,
University of Notre Dame, USA.

I electrical current
k thermal conductivity
qaxial heat transfer along the sensor
qradial heat transfer from the sensor to the fluid
L length of the sensor
Nu Nusselt number
Pr Prandtl number
PWM pulse width modulated CTA
R electrical resistance
Re Reynolds number
〈T 〉 clock time for the PWM circuit
T ′ heating cycle time for PWM
t time
t0 time location of step function (see

equation (11))
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t f response time of C-CTA
T (x, t) wire temperature
V cooling velocity of the fluid
x coordinate along the sensor axis
α thermal diffusivity
φ response ratio of sensor
τthermal time constant of analytical

solution (equation (14))
τ duration of heating current of a PWM cycle
ρ density of sensor material

Subscripts
n spatial node
k pulse number of PWM-CTA
f indicates properties evaluated at film

temperature
Superscript
p simulation time step

1. Introduction

Constant temperature anemometry (CTA) has been used for
the measurement of velocity and wall shear stress in turbulent
flow fields for nominally four decades; see Bruun (1995). This
technique typically utilizes a hot-wire or hot film sensor which
is heated to a constant temperature using an electronic control
system. This control system, along with the thermal transient
effects within the sensor will control the dynamic response of
the system. The effects of the electronic control have been
studied by, for example, Freymuth (1977) and Perry (1982).
However, the frequency response characteristics of the sensor
due to thermal effects have not been thoroughly established.
The present study will provide quantitative information about
the thermal frequency response of a typical hot-wire sensor
using a finite element heat transfer calculation.

A schematic representation of a typical sensor is shown
in figure 1. The temperature of the sensor is maintained
at a nominally constant value of 1.7Tgas , where 1.7 is the
heating ratio. The electronic control system establishes the
average temperature of the sensor by maintaining the operating
resistance of the sensor at the level: Rhot = 1.7Rcold . Note that
it is the net resistance, and hence the spatial average operating
temperature of the sensor, which is controlled. For a given
sensor geometry, the steady state temperature distribution
is a function of the cooling velocity; see figure 2. These
temperature distributions are derived analytically for the steady
state case in Freymuth (1979). The two curves represent T (x)

for a high and low cooling velocity. The differences between
the curves have been exaggerated for illustrative purposes.

The importance of these temperature distributions
becomes evident when considering the energy balance for the
sensor:

electrical input power = convection to fluid

+ conduction to supports. (1)

The electrical power supplied to the sensor is measured as
the square of the output voltage from the anemometer. The
convective heat transfer is related to the fluid velocity by
the Nu = Nu(Re) relationship, where Nu is the Nusselt
number and Re is the Reynolds number for the steady state
flow past the sensor. In addition, the conductive heat transfer

Figure 1. Schematic of the simulated hot-wire sensor.
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Figure 2. Schematic of temperature distribution at high and low
cooling velocities. Note that the difference in temperature has been
exaggerated for illustrative purposes. Actual temperature
differences are given in figure 13.

to the support stubs also depends on the magnitude of the
fluid velocity. Specifically, the conduction is given by the
temperature gradient at (x = L/2). Because the distribution
T (x) is dependent on the fluid velocity as shown in figure 2,
the conduction can also be considered a function of the fluid
velocity.

In steady state operation, these effects are accounted for
in the calibration procedure which relates the cooling velocity
to the anemometer’s output; that is, the right and left sides
of equation (1), respectively. However, because the thermal
transient effects within the sensor will occur with a much
longer time constant than that of the sensor control system,
the steady state relationship provided by the calibration will
not accurately represent the conduction term at x = L/2 if
rapid velocity changes are present. These effects, which will
be described more thoroughly and quantitatively in the results
section, represent the focus of this communication.

Previous efforts which have described these thermal
effects include Perry (1982). In chapter 2 of this reference, the
combination of electrical and thermal effects were written as a
differential equation (2.8.2) to model the appropriate heating
and cooling terms. A time-averaged and a linear perturbation
of this equation were derived. These equations and their
boundary conditions were solved to provide a relationship
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between a perturbation in velocity or gas temperature to the
resulting perturbation in wire voltage. The complexity of
these solutions, however, prevents easily obtained quantitative
conclusions about the interpretation of anemometry data from
turbulent flow fields.

The effect of thermal transients on the frequency response
of the sensor was also studied analytically by Freymuth (1979).
His equations describe a critical frequency: f�, above which
the sensor response is reduced to a nominally constant value:
ε�. The theory provides estimates of ε� and f� based on the
material properties and geometry of the sensor. Freymuth
then provides a qualitative representation of the shape of the
frequency response curve based on these parameters. The
present numerical work supports these findings and provides
quantitative results without the use of the assumptions which
were required for the analytical findings; see section 4.3
of the present communication. It is noteworthy that the
present computations support Freymuth’s theory and that,
in the judgement of the present authors, these theoretical
considerations have not been adequately recognized. For
example, this important aspect of thermal anemometry is not
considered in the monograph by Bruun (1995) nor in the
handbook chapter by Comte-Bellot (1998).

The following section presents the details of the heat
transfer model that was used in the calculation. Since
the present objective was to isolate the sensor effects from
the electrical characteristics, two separate electrical circuits
were modelled to validate this isolation: an idealized
conventional (C-CTA), and a pulse-width-modulated (PWM-
CTA) anemometer. Section 3 presents the electrical control
system models for these two circuits. Agreement from these
two types of anemometer circuit simulations confirms that the
response is solely a function of the sensor element.

Section 4 describes the results of the calculation for varied
input cooling velocity functions. The relationship between the
input velocity and the output of the simulated anemometer was
obtained using steady state input velocities. These results were
used to ‘calibrate’ the model in a similar way that a physical
calibration would be used. Secondly, a step function was used
to provide an understanding of the heat transfer balance after a
sudden change in cooling velocity. Lastly, a series of sinusoidal
inputs were used to create a plot of the thermal frequency
response.

2. Thermal model of sensor

A wide variety of hot-wire materials and geometries are
utilized in the measurement of fluid velocities. A typical hot-
wire probe used in gas phase turbulence research was chosen
for the present computations; see figure 1. This hot-wire uses
a 1 mm active region of 5 µm tungsten filament with 50 µm
copper plated support stubs, as recommended by Comte-Bellot
(1976). The unplated tungsten is referred to as the ‘active’
portion of the sensor. The x-coordinate for the sensor is shown
from the centre of the wire.

Figure 3 shows a detailed view of the sensor model.
Both the tungsten and copper sections were discretized in the
x direction; lumped capacitance was assumed in the radial
direction since the Biot number in the radial direction is quite
small; Bi ≈ 10−4 � 1, see Incropera and DeWitt (1990). The

Figure 3. Modelled hot-wire with boundary conditions (not to
scale). The �x segment represents one of the 165 nodes identified
in the equations of section 2.1.

half-sensor was discretized with 150 nodes (n = 1, . . . , 150)

in the tungsten and 15 nodes (n = 151, . . . , 165) in the copper
stub, where n denotes the node number. It was found that
additional nodes changed the results less than 0.1%.

2.1. Governing equations

The differential equation governing the transport of thermal
energy is given by:

ρc Ac(�x)
∂T

∂t
= qaxial + qradial + I 2 R. (2)

The left-hand side represents the time rate of change of thermal
energy of a single element (�x). The terms of the right-
hand side represent the net conduction, convective cooling, and
volumetric heating, respectively, for a given element. The time
derivative was discretized using a simple forward difference:

ρc Ac(�x)
∂T

∂t
= ρncn(Ac)(�x)

T p+1
n − T p

n

�t
. (3)

The subscript ‘n’ indicates that these property values were
evaluated at each node to account for their variations with
temperature. The conductive heat transfer along the length
of the sensor (qaxial ) was modelled with a second order spatial
difference:

qaxial = kn Ac(�x)

(
∂2T

∂x2

)
= kn Ac

(
T p+1

n+1 + T p+1
n−1 − 2T p+1

n

�x

)
.

(4)
The radial heat flux (convection) from each segment of the
sensor, as well as that of the plated section, was modelled by
the Nusselt number relation:

Nu = 0.42Pr0.26
f + 0.57Pr0.33

f Re0.45
f . (5)

This Nu = f (Re, Pr) relationship, is given by Bruun (1995).
Note that the subscript ( f ) indicates that all fluid properties are
evaluated at the ‘film temperature’, where T f ilm = (Twire −
Tambient)/2. Although the form of equation (5) is consistent in
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the literature, the constants used vary, see, e.g., Perry (1982).
The results of the present simulation will not be sensitive to the
specific Nu = f (Re, Pr) relationship since the anemometer’s
response is numerically ‘calibrated’ as described in section 4.1.

The Joule heating term was calculated for each node as:

I 2 Rn =
(

Esensor

Rsensor

)2

Rn (6)

where Esensor is the voltage across the simulated probe by the
electronic control circuit (see section 3), and Rsensor is the total
resistance of the probe.

2.2. Boundary conditions

The velocity vector was considered to be perpendicular to the
sensor. Hence symmetry permits the model to be applied to
half of the sensor. The boundary condition at the half plane
(x = 0) was that of zero axial heat conduction:

∂T

∂x

∣∣∣∣
x=0

= 0. (7)

The interface between the tungsten and copper sections (x =
L/2) was treated as an abrupt change in material and diameter.
Note that this is in contrast to that used in Perry (1982)
where the copper plating was assumed to taper down gradually.
Environmental scanning electron microscope (ESEM) photos
of probes manufactured by the authors have shown that the
abrupt change in diameter provides a good description of our
probes.

The boundary condition at the end of the copper plating:
T = Tgas was considered to be rational given the relatively
large thermal mass of the support prongs.

2.3. Steady state temperature solution

The boundary conditions and equation (2) for each node
created a set of 165 coupled algebraic equations. A tri-diagonal
matrix of the coefficients was created and inverted to solve for
the new temperature distribution at each time step. The implicit
nature of the conduction solution ensures numerical stability.

The temperature distribution for a steady state input
velocity of 7.5 m s−1 and an overheat ratio Rhot/Rcold =
1.7 is shown in figure 4. The zero temperature gradient at
x = 0 is evident. Also note the strong heat sink effect
of the copper plating. The temperature at the end of the
sensor was T (L/2) − Tgas = 13.2 ◦C compared to the mean
wire temperature of 210 ◦C above ambient. An important
feature of this solution is that the effect of conduction to the
supports has propagated throughout the length of the sensor.
The steady state temperature solution was solved analytically
(see Freymuth 1979) and is shown along with the numerical
solution on figure 4. The agreement indicates that the spatial
resolution of the discrete model (150 tungsten nodes, 15 copper
nodes) is sufficient.

3. CTA models

The thermal model described in section 2 was used with
two types of modelled CTA electronic circuits. The term
‘conventional’ is used to refer to a Weatstone bridge-feedback

Analytical

Numerical
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Figure 4. Steady state temperature distribution.

amplifier type of system. This will be described in section 3.1.
The recently developed ‘PWM’ (see Foss et al 1996) electronic
control was also simulated. This system provides several
advantages over a conventional system as described in
section 3.2.

3.1. The conventional CTA

The parameters of the simulated electrical components were
chosen to have nearly ideal operating characteristics in order
to isolate the thermal effects from the electrical control
model. For example, an unrealistically large gain-bandwidth
specification was used to represent the amplifier. The modelled
components were also considerably less complex than those
used in a physical device. For example probe cable effects
were not considered.

The Wheatstone bridge and amplifier of the conventional
CTA (C-CTA) are shown schematically in figure 5. The
equations used to model the curcuit can be found in any
standard reference, for example, Thomas and Rosa (2001).
The amplifier was modelled as a single pole filter with a
gain of 49 000 and a corner frequency of 5 MHz. Note that
the gain-bandwidth product of this hypothetical amplifier was
2.5 × 1011 Hz, compared to a physical device in which a value
of order 5 × 107 Hz is typical. The circuit model was used to
compute the electrical voltage to be supplied to the wire model
in equation (6) at each time step. The time discretization of
the model was set to �t = 15.6 ns. These data were then
resampled at 64 000 Hz for storage which corresponds to the
operating frequency of the PWM-CTA simulation discussed in
the next section.

The response of the modelled system was tested using a
square wave perturbation in the feedback amplifier. This test,
in which a 50 mV step was applied to the sensor operating at a
steady state 7.5 m s−1 input velocity, is the same as that used
in physical systems. The voltage response function is shown
in figure 6. This output can be characterized as a slightly
underdamped response with a 13% overshoot. The time of the
first crossing of the steady state value was tc = 0.2 µs. Hence
the effective frequency response of the simulated anemometer
was estimated to be (see Freymuth 1977):

f = 1

1.3tc
= 3.8 × 106 Hz. (8)

These characteristics represent a nearly ideal anemometer
that could not be physically realized given the limitations
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Figure 5. Simulated circuit design for conventional anemometer.
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Figure 6. Impulse response of the modelled conventional
anemometer.

of electronic technology, and provides a modelled system in
which only the thermal effects on the frequency response are
considered.

3.2. Pulse-width-modulated CTA model

The PWM-CTA is a digital electronic control system invented
at Michigan State University and described in Hicks et al
(1997) and Foss et al (1996). An overview of the device,
whose circuit is presented in figure 7, will be given here. The
operating principle of this device is to periodically heat the
wire to the proper overheat temperature, followed by a cooling
period during which the resistance of the sensor decreases
to nominally 99% of the proper overheat value (Rhot ). The
essential components are the comparator, the master clock,
a ‘flip-flop’, and the current source connected to the circuit at
point ‘E A’. A timing diagram is shown in figure 8. The master
clock triggers the flip-flop at time tk , which applies a heating
current to the sensor. The sensor temperature and resistance
increase, thereby increasing the voltage at point ‘EB’. This
voltage (EB ) and a reference voltage (Ere f ) are the inputs to
the comparator. When EB > Ere f , the comparator triggers
the flip-flop to turn off the heating current. This is shown as
time: tk + τk in figure 8. The wire will cool until the master
clock initiates another heating cycle at time tk+1 = tk + 〈T 〉.
The wire is heated again until it reaches the proper overheat
resistance. This is shown as time tk+1 +τk+1. The time duration

Figure 7. Circuit diagram for the PWM-CTA.

Figure 8. Timing diagram for PWM anemometer.

that current is applied to the sensor (τk+1 for this cycle) is the
output from the device. In a physical unit, a second high speed
counter that is synchronized with the master clock measures
this time duration and outputs the τ values directly to computer
memory.

The electrical energy delivered to the wire during a clock
cycle is represented by the ratio of the pulse width τk+1 to
the time T ′

k+1 = 〈T 〉 + τk+1 − τk . This (τ/T ′) value is used
to represent the net heat transfer from the wire given that the
average temperature, or energy, of the wire is the same at times
(tk + τk) and (tk+1 + τk+1). The resulting relationship between
the PWM-CTA output and the cooling velocity over the wire is
a second power (τ/T ′ ∼ V n) and not a fourth power response.
The latter is characteristic of the C-CTA (E2 ∼ V n) since n
is nominally 0.45. These (τ/T ′) data are then post processed
into a time series representation of the analog velocity.

There are several advantages to the PWM method of
controlling the sensor temperature. Firstly, because the system
operates as an energy balance, the system should be able to
track the fluid velocity for every clock cycle. That is, there is
no exponential decay time and overshoot as with linear control
system responses. The effective ‘frequency response’ is only
limited by the choice of clock frequency (i.e., the resolution
with which τ can be determined) and the ability of the circuit to
accurately determine EB > Ere f in the presence of electronic
noise. Physical PWM-CTA units have used a 64 kHz clock
cycle for T at the time of this work. A 500 kHz system
has also been utilized. Other advantages of the PWM include
the potential for reduced noise levels given the absence of the
high gain amplifier, increased sensitivity and stability for high
speed measurements, and direct digital acquisition (no A/D
required).

The simulation algorithm for the PWM-CTA was as
follows. A computational loop was created which periodically
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Figure 9. Calibration results for C-CTA and PWM-CTA.

Table 1. Calibration results (2 < V < 12 m s−1).

A B n

PWM-CTA simulation 0.192 0.113 0.45

Typical PWM-CTA 0.25 0.1 0.45
experimental values

C-CTA Simulation 5.740 2.607 0.45

Typical C-CTA 6 3 0.45
experimental values

applied the heating current in equation (2). Once the total
resistance of the wire reached the overheat value of 1.7Rcold

the current was set to zero for the remainder of the cycle. The
time discretization of �t = 15.6 ns was used corresponding
to 1000 time steps per heating cycle. Smaller time steps were
found to cause less than a 0.05% change in the output values.

4. Results of transient response

4.1. Model calibration

Both the PWM-CTA and the C-CTA models were calibrated
using a range of steady state input velocity values. The
simulations were run for a sufficiently long time to achieve
a steady state output. The calibration results were then used to
find the coefficients of the transfer functions:

τ

T ′ = APW M + BPW M V n (9)

and
E2 = AC + BC V n (10)

for the PWM-CTA and the idealized C-CTA respectively.
These data are shown in figure 9 with the fitted equations (9)
and (10). The simulation coefficients are shown in table 1 along
with values typically found in physical calibrations. The slope
(B) and exponent (n) agree quite well for both simulations,
indicating that the heat transfer model is reasonable. The
offset term (A) was found to be somewhat lower than the
A values for the physical calibrations. This is attributed
to electrical components that are specific to the physical
anemometers. Note that changing the constants in the heat
transfer relationship given in equation (5) results in changes
in the A, B, and n values of equations (9) and (10). However,
these differences did not effect the transient results presented
herein.
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Figure 10. Anemometer output from step input velocity.

4.2. Step function response

The response of the thermal system was investigated by
applying a known input velocity function through equation (5)
and observing the output of the simulation. It was decided that
a steady state condition (V = 5 m s−1) followed by a step
increase in velocity would provide the greatest insight into the
thermal characteristics of the sensor. The frequency response
will be discussed in the following section.

The data presented below were generated by the use of a
step function in the input convection velocity:

V (t) = 5.0 + 2.5H(t − to)(m s−1) (11)

where H(t − to) is the unit Heaviside step function (H = 0
for t < to and H = 1.0 for t > to). The results from this
input function for both PWM-CTA and C-CTA are shown in
figure 10. These data show that both electrical control systems
showed a 2.33 m s−1 rise in output velocity in the first 16 µs
(one PWM time step) following the 2.5 m s−1 step in input
velocity. This initial jump in output was then followed by
a relatively long (∼1.0 ms) rise to the steady state velocity.
Figure 11 is an expanded view of the same data using a log
scale for the time axis. The linear portion of this rise to the
steady state value indicates that the response is exponential
where the slope is proportional to the time constant of the
response.

The thermal mechanism which leads to the inability
of the hot-wire to provide accurate velocity readings with
transient convection velocity was described qualitatively in
the discussion following equation (1). The remainder of this
section will serve to clarify the exact nature of the thermal
transient response. The under predicted velocity (for 0 < t <

1 ms) presented in figure 10 can be explained as follows for
the PWM-CTA. A similar argument can be presented for the
C-CTA. Consider the energy balance of the sensor for a single
time cycle as shown in figure 8, i.e., integrating equation (2)
over the time duration (tk + τk) to (tk+1 + τk+1);

ρc Ac(�x)

∫ (tk+1+τk+1)

(tk +τk )

[∫ x=L/2

x=0

(
∂T

∂t

)
dx

]
dt

=
∫ (tk+1+τk+1)

(tk +τk )

qaxial

(
x = L

2

)

+

[∫ x=L/2

x=0
{(qradial ) + (I 2 R)} dx

]
dt. (12a)
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The time and spatial integrations can be interchanged on
the left-hand side of the equation such that it represents
the difference in the total thermal energy of the wire at
the beginning and the end of a heating cycle. Because the
resistance of the wire is the same at the beginning and end of a
cycle, the average temperature must be the same. Therefore the
net ‘energy change’ of the wire must be zero. Equation (12a)
can be restated as:

Net energy change = 0 = net conduction + convection

+ heating. (12b)

The ‘heating’ as represented by τ/T ′ must balance the thermal
energy transferred from the wire through ‘conduction’ and
‘convection’.

It is now instructive to compare the terms of equation (12)
for two heating cycles:

(i) the cycle immediately after the step function occurred, and
(ii) the cycle at the final steady state value.

In these two cases the magnitude of the convective cooling
is identical (the cooling velocity is the same, and the average
wire temperature is constant). In order for the net heating to be
different for the two cases as indicated by the different output
(velocity) values, the net conduction must be different. That
is, changes in the net conduction following the step change in
velocity cause the balance between the terms in equation (12)
to vary compared to the steady state condition.

It is therefore instructive to examine the magnitude of
conduction relative to the convection during the step response.
This ratio is defined as:

q∗ = net conduction

net convection
= Ac(kTu)

∂T
∂x |x=L/2

Nuk f π(L/2)(0.7Tgas )
. (13)

The step function response of this heat loss ratio is shown in
figure 12. The constant value for t −to < 0 indicates the steady
temperature distribution preceding the step change in velocity.
The response for t − tp > 0 is an exponential rise similar to
that shown in the simulation output. The difference between
the steady state conduction at these two velocities is 2%.

A physical explanation as to why the conduction term
increases with velocity is offered as follows. Increasing the
convective cooling over the sensor leads to a temperature
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Figure 12. Dimensionless conduction from the hot-wire; see
equation (14).
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Figure 13. Steady state temperature difference from V = 5.0 to
7.5 m s−1.

distribution along the sensor which exhibits lower temperatures
in the middle region of the wire, and higher temperatures near
the end of the wire. That is, the temperature distribution
at higher velocities appears ‘flatter’ as shown schematically
in figure 2. The actual difference between T (x) at the two
velocities 5.0 and 7.5 m s−1 is shown in figure 13. This flattened
distribution results in a temperature gradient at x/L = 0.5
which increases with increasing velocity.

The calibration of a hot-wire system, either physical
or numerical, is based on the steady state ‘balance’ of
equation (12). In a transient environment, it is expected
that instantaneous changes in the convective cooling will be
reflected in the sensor heating (i.e., the ‘output’). However,
it has been shown that the conduction term does vary with
velocity, and can ‘disrupt’ the balance in a highly transient
environment. The response time of the conduction term
depends on how quickly the T (x) distribution can adjust to
the new convective boundary condition, as discussed in the
following section.

4.3. Thermal frequency response of the sensor

The thermal frequency response of the sensor was identified by
using sinusoidal input functions for the cooling velocity. These
tests were conducted in the range 1 < f < 2.5 × 10.6 (Hz).
The sampling frequency was at least 50 times the input
frequency in all cases in order to eliminate aliasing errors.
The amplitude of the velocity output from the model was
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Figure 14. Example of sinusoidal input and output at 1000 Hz.

compared with the input function to determine the response
ratio. Figure 14 shows an example of the input and output
functions at 1000 Hz with unit magnitude. These data clearly
show that the output of the anemometer underpredicts the
magnitude of the sine wave input function. The response ratio
(φ) is defined as the RMS of the output signal divided by the
RMS of the input signal.

The φ values from these tests are shown in figure 15.
The frequency is shown in Hz on the lower axis, and as a
dimensionless frequency f ∗ = f τthermal on the upper axis,
where τthermal is defined as:

τthermal = 4L2

π2α
. (14)

This represents the exponential time constant of the first
eigenmode of the series solution of the one-dimensional
conduction–convection problem of a finite cylinder; see Ozisik
(1980). For the sensor considered here, τthermal = 11.8 ms.
The calculated data show a unit response for the range f <

100 Hz. Higher frequencies show a reduced output/input
amplitude ratio. Note that significant deviations from unity are
observed starting near f ∗ ≈ 1. The φ values were found to
decrease throughout the range of frequencies tested, although
the decreasing slope indicates that an asymptotic value will be
reached in the limit f → ∞. Note that no detectable phase
shift was found in the computations, and therefore no phase
data are presented to complement the φ( f ∗) data.

For the sensor geometry described, the equations in
Freymuth (1979) lead to values of ε′

� = 0.93 and f� = 260 Hz
which are also shown in figure 15. The present numerical
results support both of these analytical results with the specific
observations that f ∗

� = f�τthermal = 3.06, and the response
ratio at the highest frequency measured was found to be 0.932.
Note that the shape of the φ( f ) function serves to clarify the
Freymuth (1979) statement that φ → ε′

� for f > 100 f� . That
is, the decrease to the φ( f = ∞) value is quite gradual, and
that f > 104 f� would more accurately indicate the range for
which φ( f ) ≈ φ( f = ∞).

It is noteworthy that the asymptotic value of φ is attained
at a frequency that is much larger than that which would be
experienced for a typical anemometer system. Figure 15, can
be used as a guide to the expected attenuation for a given
measurement. As a representative example, consider that the
Kolmogorov microscale is 0.15 mm for this 7.5 m s−1 flow
speed. The corresponding frequency would be 5 × 104 Hz,
where φ ≈ 0.94.

fl
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Figure 15. Thermal frequency response.

5. Conclusions

The effects of thermal transients on the output of a hot-
wire system have been investigated in this numerical work.
Two distinct electrical control circuits: a conventional CTA
with idealized components, and a PWM-CTA, were modelled
to ensure that the results were not related to the simulated
electronics. A typical 5 µm diameter, 1 mm long, tungsten hot-
wire was modelled. Two types of velocity input functions were
used to explore the physical nature of the thermal transients. A
step response was used to clarify the role of the heat conduction
term in equation (12) during a change between two steady state
conditions. The frequency response of the sensor φ( f ) was
determined by testing a range of sine wave input functions.

As confirmed by these computations, the ability of a hot-
wire and its electronic control system to accurately follow the
true convection velocity of the fluid depends not only on the
electrical control system but also on the thermal characteristics
of the hot-wire sensor. The latter dependency reflects the fact
that the anemometer can only control the averaged temperature
of the sensor, and, the transient changes in the distribution T (x)

do have an effect on the system output.
It is noted, again, that the analytical work of Freymuth

(1979) clearly indicates the conclusions above. The present
work serves to clarify the importance of this theory, and to
document the true response of a wire without the use of
simplifying assumptions. To this end, figure 15 provides
a specific response ratio (φ) as a function of the velocity
fluctuation frequency for the sensor of this study. Note
that Freymuth (1979) assumes a heating ratio of 1.2 in his
analysis, and then provides results which are independent
of this parameter. The present computations used a heating
ratio of 1.7. The agreement the Freymuth predictions and the
present results confirms that the thermal frequency response is
not dependent on the heating ratio. Also, several of the data
points used to create figure 15 were repeated with a range of
heating ratios between 1.2 and 2.0. The results from these
computations showed no observable effect on the response
ratio (φ).

The numerical code developed for the present computa-
tions can also be used to test a number of hot-wire applications
where the analytical framework is not well established. For
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example, the effects of parameters such as Reynolds number
and the Mach number could be studies. The code developed
for this work can also be used to examine the characteristics
of unusual sensor configurations, such as non-constant wire
diameter, or variable material properties. The use of micro-
machined hot-wire sensors is a growing field in which the man-
ufacturing options are considerably greater than conventional
techniques (see, e.g., Naguib 2001). There exists the possibil-
ity to create sensors with specialized characteristics for a given
application. The present numerical analysis can serve to aid
in both the design of these sensors, and in the interpretation of
acquired data.

In closing, it is noted that a complete understanding of
the electronic control system (see, e.g., Freymuth 1977) as
well as the transient thermal effects should be considered
when working with experimental data in which high frequency
response is required. An impulse function in the voltage
applied to the wire (i.e., the familiar square wave test for
a C-CTA) is a typical method to determine the response
characteristics of the feed-back control system. This
information must be combined with the thermal effects of a
hot-wire for a complete understanding of the system’s transient
response capability.
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